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Goals: Day 1

1 Understand shortcomings of standard parametric regression-based
techniques for the estimation of prediction quantities.

2 Be introduced to the ideas behind machine learning approaches as
tools for confronting the curse of dimensionality.

3 Become familiar with the properties and basic implementation of the
super learner for prediction.



[Motivation]
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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.
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Electronic Health Databases

The increasing availability of electronic medical records offers a new
resource to public health researchers.

General usefulness of this type of data to answer targeted scientific
research questions is an open question.

Need novel statistical methods that have desirable statistical properties
while remaining computationally feasible.



Electronic Health Databases

I FDA’s Sentinel Initiative aims to monitor
drugs and medical devices for safety over time
already has access to 100 million people
and their medical records.

I The $3 million Heritage Health Prize Competition where the goal
was to predict future hospitalizations using existing high-dimensional
patient data.



Electronic Health Databases

I Truven MarketScan database.
Contains information on
enrollment and claims from
private health plans and
employers.

I Health Insurance Marketplace has enrolled over 10 million people.



High Dimensional ‘Big Data’ Parametric Regression

I Often dozens, hundreds, or even
thousands of potential variables

I Impossible challenge to correctly
specify the parametric regression

I May have more unknown parameters
than observations

I True functional might be described by
a complex function not easily
approximated by main terms or
interaction terms
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Estimation is a Science

1 Data: realizations of random variables with a probability distribution.

2 Statistical Model: actual knowledge about the shape of the
data-generating probability distribution.

3 Statistical Target Parameter: a feature/function of the
data-generating probability distribution.

4 Estimator: an a priori-specified algorithm, benchmarked by a
dissimilarity-measure (e.g., MSE) w.r.t. target parameter.



Data

Random variable O, observed n times, could be defined in a simple case as
O = (W ,A,Y ) ∼ P0 if we are without common issues such as missingness
and censoring.

I W : vector of covariates

I A: exposure or treatment

I Y : outcome

This data structure makes for effective examples, but data structures
found in practice are frequently more complicated.



Model

General case: Observe n i.i.d. copies of random variable O with probability
distribution P0.

The data-generating distribution P0 is also known to be an element of a
statistical model M: P0 ∈M.

A statistical model M is the set of possible probability distributions for
P0; it is a collection of probability distributions.

If all we know is that we have n i.i.d. copies of O, this can be our
statistical model, which we call a nonparametric statistical model



Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.
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Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.
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predict a value for the outcome.



[Prediction with Super Learning]



Prediction

Standard practice involves assuming a parametric statistical model & using
maximum likelihood to estimate the parameters in that statistical model.



Prediction: The Goal

Flexible algorithm to estimate the regression function E0(Y |W ).

Y outcome
W covariates



Prediction: Big Picture

Machine learning aims to

I “smooth” over the data

I make fewer assumptions



Prediction: Big Picture

Purely nonparametric model
with high dimensional data?

I p > n!

I data sparsity



Nonparametric Prediction Example: Local Averaging

I Local averaging of the outcome Y within covariate “neighborhoods.”

I Neighborhoods are bins for observations that are close in value.

I The number of neighborhoods will determine the smoothness of our
regression function.

I How do you choose the size of these neighborhoods?

This becomes a bias-variance trade-off question.

I Many small neighborhoods: high variance since some neighborhoods
will be empty or contain few observations.

I Few large neighborhoods: biased estimates if neighborhoods fail to
capture the complexity of data.
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Prediction: A Problem

If the true data-generating distribution is very smooth, a misspecified
parametric regression might beat the nonparametric estimator.

How will you know?

We want a flexible estimator that is consistent, but in some cases it may
“lose” to a misspecified parametric estimator because it is more variable.



Prediction: Options?

I Recent studies for prediction have employed newer algorithms.
(any mapping from data to a predictor)

I Researchers are then left with questions, e.g.,
I “When should I use random forest instead of standard regression

techniques?”
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Prediction: Key Concepts

Loss-Based Estimation

Use loss functions to define best estimator of E0(Y |W ) & evaluate it.

Cross Validation

Available data is partitioned to train and validate our estimators.

Flexible Estimation

Allow data to drive your estimates, but in an honest (cross validated)
way.

These are detailed topics; we’ll cover core concepts.



Loss-Based Estimation

Wish to estimate: Q̄0 = E0(Y |W ).

In order to choose a “best” algorithm to estimate this regression function,
must have a way to define what “best” means.

Do this in terms of a loss function.



Loss-Based Estimation

Data structure is O = (W ,Y ) ∼ P0, with empirical distribution Pn which
places probability 1/n on each observed Oi , i = 1, . . . , n.

Loss function assigns a measure of performance to a candidate function
Q̄ = E (Y |W ) when applied to an observation O.



Formalizing the Parameter of Interest

We define our parameter of interest, Q̄0 = E0(Y |W ), as the minimizer of
the expected squared error loss:

Q̄0 = arg minQ̄E0L(O, Q̄),

where L(O, Q̄) = (Y − Q̄(W ))2.

E0L(O, Q̄), which we want to be small, evaluates the candidate Q̄, and it
is minimized at the optimal choice of Q0. We refer to expected loss as the
risk

Y : Outcome, W : Covariates



Loss-Based Estimation

We want estimator of the regression function Q̄0 that minimizes the
expectation of the squared error loss function.

This makes sense intuitively; we want an estimator that has small bias and
variance.



Ensembling: Cross-Validation

I Ensembling methods allow implementation of multiple algorithms.

I Do not need to decide beforehand which single technique to use; can
use several by incorporating cross validation.
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Image credit: Rose (2010, 2016)
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Ensembling: Cross-Validation

I In V -fold cross-validation, our observed data O1, . . . ,On is referred to
as the learning set and partition into V sets of size ≈ n

V

I For any given fold, V − 1 sets comprise training set and remaining 1
set is validation set.
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Super Learner: Ensembling

Build a collection of algorithms consisting of all weighted averages of the
algorithms.

One of these weighted averages might perform better than one of the
algorithms alone.

It is this principle that allows us to map a collection of algorithms into a
library of weighted averages of these algorithms.



Data
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Super Learner: Optimal Weight Vector

It might seem that the implementation of such an estimator is
problematic, since it requires minimizing the cross-validated risk over

an infinite set of candidate algorithms (the weighted averages).

The contrary is true.

Super learner is not more computer intensive than the “cross-validation
selector” (the single algorithm with the smallest cross-validated risk).

I Only the relatively trivial calculation of the optimal weight vector
needs to be completed.
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needs to be completed.



Super Learner: Optimal Weight Vector

Consider that the discrete super learner has already been completed.

I Determine combination of algorithms that minimizes cross-validated
risk.

I Propose family of weighted combinations of the algorithms, index by
the weight vector α. The family of weighted combinations:

I includes only those α-vectors that have a sum equal to one
I each weight is positive or zero

Selecting the weights that minimize the cross-validated risk is a
minimization problem, formulated as a regression of the outcomes Y on
the predicted values of the algorithms (Z ).
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minimization problem, formulated as a regression of the outcomes Y on
the predicted values of the algorithms (Z ).



Super Learner: Optimal Weight Vector

Weight vector

En(Y | Z ) = αa,nZa + αb,nZb + . . .+ αp,nZp

The (cross-validated) probabilities of the outcome (Z ) for each algorithm
are used as inputs in a working statistical model to predict the outcome Y .



Super Learner: Optimal Weight Vector

Weight vector

En(Y | Z ) = αa,nZa + αb,nZb + . . .+ αp,nZp

We have a working model with multiple coefficients α = {αa, αb, . . . , αp}
that need to be estimated, one for each of the algorithms.



Super Learner: Optimal Weight Vector

Weight vector

En(Y | Z ) = αa,nZa + αb,nZb + . . .+ αp,nZp

The weighted combination with the smallest cross-validated risk is the
“best” estimator according to our criteria: minimizing the estimated
expected squared error loss function.



Super Learner: Ensembling

Due to its theoretical properties, super learner:

performs asymptotically as well as the best choice among the family
of weighted combinations of estimators.

Thus, by adding more competitors, we only improve the
performance of the super learner.

The asymptotic equivalence remains true if the number of algorithms in
the library grows very quickly with sample size.



Super Learner: Oracle Inequality

Bn ∈ {0, 1}n splits the sample into a training sample {i : Bn(i) = 0} and
validation sample {i : Bn(i) = 1}. P0

n,Bn
and P1

n,Bn
denote the empirical

distribution of the training and validation sample, respectively. Given
candidate estimators Pn → Q̂k(Pn), the loss-function-based
cross-validation selector is:

kn = K̂ (Pn) = arg min
k

EBnP
1
n,Bn

L(Q̂k(P0
n,Bn

)).

The resulting estimator is given by Q̂(Pn) = Q̂K̂(Pn)(Pn) and satisfies the
following oracle inequality: for any δ > 0

EBn{P0L(Q̂kn(P0
n,Bn

)−L(Q0)} ≤ (1 + 2δ)EBn min
k

P0{L(Q̂k(P0
n,Bn

))−L(Q0)}

+2C (δ)
1 + logK (n)

np
.

van der Laan & Dudoit (2003)



Screening: Will Be Useful for Parsimony

I Often beneficial to screen
variables before running
algorithms.

I Can be coupled with
prediction algorithms to
create new algorithms in
the library.

I Clinical subsets

I Test each variable with
the outcome, rank by
p-value

I Lasso
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Screening: Will Be Useful for Parsimony
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I Can be coupled with
prediction algorithms to
create new algorithms in
the library.

I Clinical subsets

I Test each variable with
the outcome, rank by
p-value

I Lasso



The Free Lunch

I No point in painstakingly deciding which estimators; add them all.

I Theory supports this approach and finite sample simulations and data
analyses only confirm that it is very hard to overfit the super
learner by augmenting the collection, but benefits are obtained.





Mortality Risk Score Prediction in Elderly Populations

Previous studies in the United States have indicated that

I gender,

I smoking status,

I heart health,

I physical activity,

I education level,

I income, and

I weight

are among the important predictors of mortality in elderly populations.

Prediction functions for mortality have been generated in an elderly
Northern California population aged 65 and older (Rose et al. 2011) and
for nursing home residents with advanced dementia (Mitchell et al. 2010).



Super Learner: Kaiser Permanente Database

Kaiser Permanente is based in Northern California and provides medical
services to approximately 350,000 persons over the age of 65 each year.

I Gender & age obtained from administrative databases

I 184 disease and diagnoses variables (medical flags) obtained
from clinical and claims databases



Super Learner: Kaiser Permanente Database

Nested case-control sample (n=27,012).

I Outcome: death.

I Covariates: 184 medical flags, gender & age.

Ensembling method outperformed all other algorithms.

Generally weak signal with R2 = 0.11.

Observed data structure on a subject can be represented as
O = (Y ,∆,∆X ), where X = (W ,Y ) is the full data structure, and ∆
denotes the indicator of inclusion in the second-stage sample.

How will this electronic database perform in comparison to a cohort study?

van der Laan & Rose (2011)



Super Learner: Sonoma Cohort Study

I The observational cohort data included 2,066 persons aged 54 and
over who were residents of Sonoma, CA and surrounding areas in
Northern California.

I Enrollment began in May 1993 and concluded in December 1994 with
follow-up continuing for approximately 10 years.



Super Learner: Sonoma Cohort Study

Observational sample (n=2,066) of persons over the age of 54.

I Outcome Y was death occurring within 5 years of baseline.

I Covariates W = {W1, . . .W13} included self-rated health score and
physical activity.



Super Learner: Sonoma Cohort Study

Table: Characteristics (n = 2, 066)

Variable No. %

Death (Y ) 269 13
Female (W1) 1,225 59
Age, years

54 to 60 (W2) 323 16
61 to 70 (W3) 749 36
71 to 80 1,339 65
81 to 90 (W4) 245 12
> 90 (W5) 22 11



Super Learner: Sonoma Cohort Study

Table: Characteristics (n = 2, 066)

Variable No. %

Self-rated health, baseline
excellent (W6) 657 32
good 1,037 50
fair (W7) 309 15
poor (W8) 63 3

Met minimum physical activity level (W9) 1,460 71
Current smoker (W10) 172 8
Former smoker (W11) 1,020 49
Cardiac event prior to baseline (W12) 356 17
Chronic health condition at baseline (W13) 918 44



Super Learner: Sonoma Cohort Study

Fit each algorithm on the training 
set for each V fold. For example, 
in fold 1, our training set could be 
blocks 1-9, where block 10 will be 
the validation set.  Each 
algorithm is fit on blocks 1-9. In 
fold 2, our training set might be 
blocks 1-8 and block 10 with 
block 9 serving as the validation 
set, and so on. At the end of this 
stage you have V fits for each 
algorithm.

Split the SPPARCS data into V mutually 
exclusive and exhaustive blocks of equal or 
approximately equal size.  Here V = 10.

 

Start with the SPPARCS data 
and a collection of M algorithms. 
In this analysis M = 12.

For each algorithm, predict the outcome Y using 
the validation set in each fold, based on the 
corresponding training set fit for that fold.  At the 
end of this step you have a vector of predicted 
values Dj, j=1 ,…, M for each algorithm.

Compute the estimated CV MSE for each 
algorithm using the predicted values Dj 
calculated from the validation sets.

Calculate the optimal weighted combination of 
M algorithms from a family of weighted 
combinations indexed by the weight vector α.  
This is done by performing a regression of Y on 
the predicted values D to estimate the vector α. 
This calculation determines the combination that 
minimizes the CV risk over the family of 
weighted combinations.

Fit each of the M algorithms on the 
complete data set. These fits 
combined with the estimated 
weights form the super learner 
function that can be used for 
prediction.

To obtain predicted values for the 
SPPARCS data, run the data 
through the super learner function.
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ECOG: Research Proposal

Investigator: Dr. Robert Gray, Eastern Cooperative Oncology Group, Dana-Farber Can-
cer Institute & Harvard School of Public Health

Below is an example of the types of research questions we can answer with our Super Learn-
ing and Targeted Maximum Likelihood methodology in your datasets. We look forward to
collaborating with you to identify research questions of interest to you and your study group.

Q̄SL,n = 0.461Q̄bayesglm,n + 0.496Q̄gbm,n + 0.044Q̄mean,n

Eastern Cooperative Oncology Group (ECOG) E4494: The E4494 cancer trial is
a lymphoma study of CHOP plus rituximab therapy (R-CHOP) versus CHOP alone at
induction and a second ranomization of maintenance rituximab versus observation based on
intermediate response to the initial treatment. The clinical outcome of interest was time till
death. The E4494 trial posed challenges for interpretation due to the interaction between
the induction and maintenance therapies. The weighted analysis that was employed in the
original article was di�cult for the clinical community to understand or accept, leaving some
doubt in the results. Our collaborators at ECOG believe that it would be of great interest
to apply our Super Learning and Targeted Maximum Likelihood Estimation (SL-TMLE)
methodology to estimate the treatment e↵ect of the induction R-CHOP versus CHOP in the
absence of maintenance therapy.

With super learning, cross-validation is used to select from a variety of candidate esti-
mators for prediction to compute a super learner which outperforms each of the candidate
estimators (van der Laan et al., 2007). TMLE is a generic tool that can be applied to any
data structure, thus including missingness, right-censoring, non-compliance, and sequentially
randomized trials (van der Laan and Rubin, 2006). With TMLE, we can estimate marginal
e↵ects, such as the treatment e↵ect, adjusted for covariates. The procedure is both double
robust and e�cient. The use of these two methods combined as SL-TMLE yields maximal
bias reductions and increases in e�ciency in many practical situations. We can also target
many parameters that were previously unavailable and adjust for e↵ect modification across
a large number of factors.

The second question posed by this study, maintenance rituximab versus observation, has
also left our collaborators unsatisfied. On the basis of the published results, maintenance
rituximab has been considered to be without therapeutic merit if patients received R-CHOP
induction. Is that true for all patients or do a subset benefit? Another curious fact about
the e↵ect of maintenance rituximab after CHOP alone is that the highly significant time
to disease progression does not correlate with survival benefit. This is most unusual in
di↵use large B-cell lymphoma, where (particularly in older patients) the time to disease
progression and overall survival curves are nearly superimposable. Is there anything more
in the data indicating which patients benefit from maintenance rituximab? Why don’t we
see a survival advantage, or is there such an advantage in a subset of patients? There is
also a tissue microarray available on a subset of these patients. Beyond gaining e�ciency
of the treatment e↵ect estimates based on the measured patient characteristics, this allows

1
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calculated from the validation sets.
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M algorithms from a family of weighted 
combinations indexed by the weight vector α.  
This is done by performing a regression of Y on 
the predicted values D to estimate the vector α. 
This calculation determines the combination that 
minimizes the CV risk over the family of 
weighted combinations.

Fit each of the M algorithms on the 
complete data set. These fits 
combined with the estimated 
weights form the super learner 
function that can be used for 
prediction.

To obtain predicted values for the 
SPPARCS data, run the data 
through the super learner function.
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ECOG: Research Proposal

Investigator: Dr. Robert Gray, Eastern Cooperative Oncology Group, Dana-Farber Can-
cer Institute & Harvard School of Public Health

Below is an example of the types of research questions we can answer with our Super Learn-
ing and Targeted Maximum Likelihood methodology in your datasets. We look forward to
collaborating with you to identify research questions of interest to you and your study group.

Q̄SL,n = 0.461Q̄bayesglm,n + 0.496Q̄gbm,n + 0.044Q̄mean,n

Eastern Cooperative Oncology Group (ECOG) E4494: The E4494 cancer trial is
a lymphoma study of CHOP plus rituximab therapy (R-CHOP) versus CHOP alone at
induction and a second ranomization of maintenance rituximab versus observation based on
intermediate response to the initial treatment. The clinical outcome of interest was time till
death. The E4494 trial posed challenges for interpretation due to the interaction between
the induction and maintenance therapies. The weighted analysis that was employed in the
original article was di�cult for the clinical community to understand or accept, leaving some
doubt in the results. Our collaborators at ECOG believe that it would be of great interest
to apply our Super Learning and Targeted Maximum Likelihood Estimation (SL-TMLE)
methodology to estimate the treatment e↵ect of the induction R-CHOP versus CHOP in the
absence of maintenance therapy.

With super learning, cross-validation is used to select from a variety of candidate esti-
mators for prediction to compute a super learner which outperforms each of the candidate
estimators (van der Laan et al., 2007). TMLE is a generic tool that can be applied to any
data structure, thus including missingness, right-censoring, non-compliance, and sequentially
randomized trials (van der Laan and Rubin, 2006). With TMLE, we can estimate marginal
e↵ects, such as the treatment e↵ect, adjusted for covariates. The procedure is both double
robust and e�cient. The use of these two methods combined as SL-TMLE yields maximal
bias reductions and increases in e�ciency in many practical situations. We can also target
many parameters that were previously unavailable and adjust for e↵ect modification across
a large number of factors.

The second question posed by this study, maintenance rituximab versus observation, has
also left our collaborators unsatisfied. On the basis of the published results, maintenance
rituximab has been considered to be without therapeutic merit if patients received R-CHOP
induction. Is that true for all patients or do a subset benefit? Another curious fact about
the e↵ect of maintenance rituximab after CHOP alone is that the highly significant time
to disease progression does not correlate with survival benefit. This is most unusual in
di↵use large B-cell lymphoma, where (particularly in older patients) the time to disease
progression and overall survival curves are nearly superimposable. Is there anything more
in the data indicating which patients benefit from maintenance rituximab? Why don’t we
see a survival advantage, or is there such an advantage in a subset of patients? There is
also a tissue microarray available on a subset of these patients. Beyond gaining e�ciency
of the treatment e↵ect estimates based on the measured patient characteristics, this allows
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Super Learner: Sonoma Cohort Study
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function that can be used for 
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Investigator: Dr. Robert Gray, Eastern Cooperative Oncology Group, Dana-Farber Can-
cer Institute & Harvard School of Public Health

Below is an example of the types of research questions we can answer with our Super Learn-
ing and Targeted Maximum Likelihood methodology in your datasets. We look forward to
collaborating with you to identify research questions of interest to you and your study group.

Q̄SL,n = 0.461Q̄bayesglm,n + 0.496Q̄gbm,n + 0.044Q̄mean,n

Eastern Cooperative Oncology Group (ECOG) E4494: The E4494 cancer trial is
a lymphoma study of CHOP plus rituximab therapy (R-CHOP) versus CHOP alone at
induction and a second ranomization of maintenance rituximab versus observation based on
intermediate response to the initial treatment. The clinical outcome of interest was time till
death. The E4494 trial posed challenges for interpretation due to the interaction between
the induction and maintenance therapies. The weighted analysis that was employed in the
original article was di�cult for the clinical community to understand or accept, leaving some
doubt in the results. Our collaborators at ECOG believe that it would be of great interest
to apply our Super Learning and Targeted Maximum Likelihood Estimation (SL-TMLE)
methodology to estimate the treatment e↵ect of the induction R-CHOP versus CHOP in the
absence of maintenance therapy.

With super learning, cross-validation is used to select from a variety of candidate esti-
mators for prediction to compute a super learner which outperforms each of the candidate
estimators (van der Laan et al., 2007). TMLE is a generic tool that can be applied to any
data structure, thus including missingness, right-censoring, non-compliance, and sequentially
randomized trials (van der Laan and Rubin, 2006). With TMLE, we can estimate marginal
e↵ects, such as the treatment e↵ect, adjusted for covariates. The procedure is both double
robust and e�cient. The use of these two methods combined as SL-TMLE yields maximal
bias reductions and increases in e�ciency in many practical situations. We can also target
many parameters that were previously unavailable and adjust for e↵ect modification across
a large number of factors.

The second question posed by this study, maintenance rituximab versus observation, has
also left our collaborators unsatisfied. On the basis of the published results, maintenance
rituximab has been considered to be without therapeutic merit if patients received R-CHOP
induction. Is that true for all patients or do a subset benefit? Another curious fact about
the e↵ect of maintenance rituximab after CHOP alone is that the highly significant time
to disease progression does not correlate with survival benefit. This is most unusual in
di↵use large B-cell lymphoma, where (particularly in older patients) the time to disease
progression and overall survival curves are nearly superimposable. Is there anything more
in the data indicating which patients benefit from maintenance rituximab? Why don’t we
see a survival advantage, or is there such an advantage in a subset of patients? There is
also a tissue microarray available on a subset of these patients. Beyond gaining e�ciency
of the treatment e↵ect estimates based on the measured patient characteristics, this allows
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Super Learner: Sonoma Cohort Study

Cohort study of n = 2, 066 residents of Sonoma, CA aged 54 and over.

I Outcome: death.

I Covariates: gender, age, self-rated health, leisure-time physical
activity, smoking status, cardiac event history, and chronic health
condition status.

I R2 = 0.201

Two-fold improvement with less than 10% of the subjects & less than 10%
the number of covariates.

What possible conclusions can we draw?

Rose (2013)



Super Learner: Sonoma Cohort Study
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Super Learner: Sonoma Cohort Study

I Previous literature indicates that perception of health in elderly adults
may be as important as less subjective measures when assessing later
outcomes (Idler & Benyamini 1997, Blazer 2008).

I Likewise, benefits of physical activity in older populations have also
been shown (Denaei et al. 2009).



Super Learner: Public Datasets

Studied the super learner in publicly available data sets.

I sample sizes ranged from 200 to 654 observations

I number of covariates ranged from 3 to 18

I all 13 data sets have a continuous outcome and no missing values

Polley et al. (2011)



Super Learner: Public Datasets

56 Eric C. Polley et al.

Table 3.3 Description of data sets, where n is the sample size and p is the number of covariates

Name n p Source

ais 202 10 Cook and Weisberg (1994)
diamond 308 17 Chu (2001)
cps78 550 18 Berndt (1991)
cps85 534 17 Berndt (1991)
cpu 209 6 Kibler et al. (1989)
FEV 654 4 Rosner (1999)
Pima 392 7 Newman et al. (1998)
laheart 200 10 Afifi and Azen (1979)
mussels 201 3 Cook (1998)
enroll 258 6 Liu and Stengos (1999)
fat 252 14 Penrose et al. (1985)
diabetes 366 15 Harrell (2001)
house 506 13 Newman et al. (1998)

the applicable algorithms from the univariate simulations along with the algorithms
listed in Table 3.4. These algorithms represent a diverse set and should allow the
super learner to work well in most practical settings. For comparison across data
sets, we kept the collection of algorithms fixed for all data analyses.

In order to compare the performance of the K prediction algorithms across di-
verse data sets with outcomes on different scales, we used the relative mean squared
error, which we denote RE for relative efficiency. The denominator is the mean
squared error of a linear model:

RE(k) =
MSE(k)

MSE(lm)
, k = 1, . . . ,K.

The results for the super learner, the discrete super learner, and each individual
algorithm can be found in Fig. 3.4. Each point represents the 10-fold cross-validated
relative mean squared error for a data set, and the plus sign is the geometric mean
of the algorithm across all 13 data sets. The super learner outperformed the discrete
super learner, and both outperformed any individual algorithm. With real data, it
is unlikely that one single algorithm would contain the true relationship, and the
benefit of the combination of the algorithms vs. the selection of a single algorithm is
demonstrated. The additional estimation of the combination parameters (α) does not
cause an overfit in terms of the risk assessment. Among the individual algorithms,
the Bayesian additive regression trees perform the best, but they overfit one of the
data sets with a relative mean squared error of almost 3.0.

A common application of prediction is in microarray data. Super learning is well
suited for this setting. Microarray data are often high dimensional, i.e., the number
of covariates is larger than the sample size. We demonstrate the super learner in
microarray data using a publicly available breast cancer data set published in van’t
Veer et al. (2002). This study was conducted to develop a gene-expression-based
predictor for 5-year distant metastases. The outcome is a binary indicator that a

Polley et al. (2011)



Super Learner: Public Datasets

Polley et al. (2011)



Super Learner: Mortality Risk Scores in ICUs

Risk scores for mortality in intensive care units is a difficult problem, and
previous scoring systems did not perform well in validation studies.

I Super learner had extraordinary performance with AUC of 94%

I Web interface

Pirracchio et al. (2015)



Super Learner: Plan Payment Implications

Over 50 million people in the United States currently enrolled in an
insurance program that uses risk adjustment.

I Redistributes funds based
on health

I Encourages competition
based on efficiency/quality

Results

I Machine learning finds
novel insights

I Potential to impact policy,
including diagnostic
upcoding and fraud

xerox.com

Rose (2016)



Super Learner: Predicting Unprofitability

I Take on role as hypothetical profit-maximizing insurer

I Health plan design on pre-existing conditions is now highly regulated
in Health Insurance Marketplaces

I What about prescription drug offerings?

New super learner algorithm shows that this distortion is possible

Rose, Bergquist, Layton (2017)



Ensembling Literature

I The super learner is a generalization of the stacking algorithm
(Wolpert 1992, Breiman 1996) and has optimality properties that led
to the name “super” learner.

I LeBlanc & Tibshirani (1996) discussed the relationship of stacking
algorithms to other algorithms.

I Additional methods for ensemble learning have also been developed
(e.g., Tsybakov 2003; Juditsky et al. 2005; Bunea et al. 2006, 2007;
Dalayan & Tsybakov 2007, 2008).

I Refer to a review of ensemble methods (Dietterich 2000) for further
background.

I van der Laan et al. (2007) original super learner paper.

I For more references, see Chapter 3 of Targeted Learning.



[Super Learner Example Code]



Super Learner R Packages

I SuperLearner (Polley): Main super learner package

I h2oEnsemble (LeDell): Java-based, designed for big data, uses H2O
R interface to run super learning

I SAS macro (Brooks): SAS implementation available on Github

More: targetedlearningbook.com/software



Super Learner Sample Code

install.packages("SuperLearner")

library(SuperLearner)



Super Learner Sample Code

##Generate simulated data##

set.seed(27)

n<-500

data <- data.frame(W1=runif(n, min = .5, max = 1),

W2=runif(n, min = 0, max = 1),

W3=runif(n, min = .25, max = .75),

W4=runif(n, min = 0, max = 1))

data <- transform(data,

W5=rbinom(n, 1, 1/(1+exp(1.5*W2-W3))))

data <- transform(data,

Y=rbinom(n, 1,1/(1+exp(-(-.2*W5-2*W1+4*W5*W1-1.5*W2+sin(W4))))))



Super Learner Sample Code

##Examine simulated data##

summary(data)

barplot(colMeans(data))



Super Learner Sample Code



Super Learner Sample Code



Super Learner Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm", "SL.mean",

"SL.randomForest", "SL.glmnet")



Super Learner Sample Code

Could use various forms of ”screening” to consider differing variable sets

SL.library <- list(c("SL.glm","screen.randomForest", "All"),

c("SL.mean", "screen.randomForest", "All"),

c("SL.randomForest", "screen.randomForest", "All"),

c("SL.glmnet", "screen.randomForest","All"))

Or the same algorithm with different tuning parameters

SL.glmnet.alpha0 <- function(..., alpha=0){

SL.glmnet(..., glmnet.alpha=alpha)}

SL.glmnet.alpha50 <- function(..., alpha=.50){

SL.glmnet(..., glmnet.alpha=alpha)}

SL.library <- c("SL.glm","SL.glmnet", "SL.glmnet.alpha50",

"SL.glmnet.alpha0","SL.randomForest")



Super Learner Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm", "SL.mean",

"SL.randomForest", "SL.glmnet")



Super Learner Sample Code

##Run the super learner to obtain predicted values for

the super learner as well as CV risk for algorithms

in the library##

set.seed(27)

fit.data.SL<-SuperLearner(Y=data[,6],X=data[,1:5],

SL.library=SL.library, family=binomial(),

method="method.NNLS", verbose=TRUE)



Super Learner Sample Code



Super Learner Sample Code



Super Learner Sample Code

#Run the cross-validated super learner to obtain its CV risk##

set.seed(27)

fitSL.data.CV <- CV.SuperLearner(Y=data[,6],X=data[,1:5], V=10,

SL.library=SL.library,verbose = TRUE,

method = "method.NNLS", family = binomial())



Super Learner Sample Code

##Cross validated risks##

#CV risk for super learner

mean((data[,6]-fitSL.data.CV$SL.predict)^2)

#CV risks for algorithms in the library

fit.data.SL



Super Learner Sample Code



Super Learner Sample Code



When Learning a New Package...



More on SuperLearner R Package

I SuperLearner (Polley): CRAN

I Eric Polley Github: github.com/ecpolley

More: targetedlearningbook.com/software



Targeted Learning (targetedlearningbook.com)

Targeted Learning in Data Science
Causal Inference for Complex Longitudinal Studies

Mark J. van der Laan

Sherri Rose

Springer

Berlin Heidelberg NewYork
Hong Kong London
Milan Paris Tokyo

van der Laan & Rose, Targeted Learning: Causal Inference for
Observational and Experimental Data. New York: Springer, 2011.
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