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Goals: Day 1

@ Understand shortcomings of standard parametric regression-based
techniques for the estimation of prediction quantities.

@ Be introduced to the ideas behind machine learning approaches as
tools for confronting the curse of dimensionality.

© Become familiar with the properties and basic implementation of the
super learner for prediction.



[Motivation]
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Big data and the future

At the beginning of her career Sherri Rose discusses big data and stands amazed at its potential.
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Electronic Health Databases

The increasing availability of electronic medical records offers a new
resource to public health researchers.

General usefulness of this type of data to answer targeted scientific
research questions is an open question.

Need novel statistical methods that have desirable statistical properties
while remaining computationally feasible.



Electronic Health Databases Se/ntine17
, . e ) Initiative
» FDA's Sentinel Initiative aims to monitor

drugs and medical devices for safety over time

already has access to 100 million people
y peop ||'=_l>|yA5

and their medical records.
» The $3 million Heritage Health Prize Competition where the goal

was to predict future hospitalizations using existing high-dimensional
patient data.

* * * L] * * * * * *

Improve Healthcare,
Win $3,000,000.



Electronic Health Databases

» Truven MarketScan database. TRUVEN @g o fnanData

Contains information on SRR
enrollment and claims from MARKETSCAN® RESEARCH

private health plans and
employers.

» Health Insurance Marketplace has enrolled over 10 million people.

Health Insurance
Marketplace



High Dimensional ‘Big Data’ Parametric

» Often dozens, hundreds, or even
thousands of potential variables
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High Dimensional ‘Big Data’ Parametric

» Often dozens, hundreds, or even
thousands of potential variables

> Impossible challenge to correctly
specify the parametric regression
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High Dimensional ‘Big Data’ Parametric

» Often dozens, hundreds, or even
thousands of potential variables

> Impossible challenge to correctly
specify the parametric regression

» May have more unknown parameters
than observations
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High Dimensional ‘Big Data’ Parametric Regression

» Often dozens, hundreds, or even
thousands of potential variables

» Impossible challenge to correctly
specify the parametric regression

» May have more unknown parameters
than observations

» True functional might be described by
a complex function not easily
approximated by main terms or
interaction terms
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Estimation is a Science

@ Data: realizations of random variables with a probability distribution.

@ Statistical Model: actual knowledge about the shape of the
data-generating probability distribution.

© Statistical Target Parameter: a feature/function of the
data-generating probability distribution.

@ Estimator: an a priori-specified algorithm, benchmarked by a
dissimilarity-measure (e.g., MSE) w.r.t. target parameter.



Data

Random variable O, observed n times, could be defined in a simple case as

O =(W,AY) ~ Py if we are without common issues such as missingness
and censoring.

» W: vector of covariates
» A: exposure or treatment

» Y: outcome

This data structure makes for effective examples, but data structures
found in practice are frequently more complicated.



Model

General case: Observe ni.i.d. copies of random variable O with probability
distribution Py.

The data-generating distribution Py is also known to be an element of a
statistical model M: Py € M.

A statistical model M is the set of possible probability distributions for
Po; it is a collection of probability distributions.

If all we know is that we have n i.i.d. copies of O, this can be our
statistical model, which we call a nonparametric statistical model



Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.
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Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.



[Prediction with Super Learning]



Prediction

FRAMINGHAM HEART STUDY

A Project of the National Heart, Lung and Blood Institute and Boston University

An interactive tool to help estimate a woman's risk

of apels
developing breast cancer M
’ i

Standard practice involves assuming a parametric statistical model & using
maximum likelihood to estimate the parameters in that statistical model.



Prediction: The Goal

Flexible algorithm to estimate the regression function Eo(Y | W).

Y outcome
W covariates



Prediction: Big Picture

Machine learning aims to
» “smooth” over the data

» make fewer assumptions

Polley etal. (2011)



Prediction: Big Picture

Purely nonparametric model
with high dimensional data?

> p>nl
» data sparsity

Polley etal. (2011)




Nonparametric Prediction Example: Local Averaging

v

Local averaging of the outcome Y within covariate “neighborhoods.”

v

Neighborhoods are bins for observations that are close in value.

v

The number of neighborhoods will determine the smoothness of our
regression function.

v

How do you choose the size of these neighborhoods?



Nonparametric Prediction Example: Local Averaging

» Local averaging of the outcome Y within covariate “neighborhoods.”
» Neighborhoods are bins for observations that are close in value.

» The number of neighborhoods will determine the smoothness of our
regression function.

» How do you choose the size of these neighborhoods?

This becomes a bias-variance trade-off question.
» Many small neighborhoods: high variance since some neighborhoods
will be empty or contain few observations.
» Few large neighborhoods: biased estimates if neighborhoods fail to
capture the complexity of data.



Prediction: A Problem

If the true data-generating distribution is very smooth, a misspecified
parametric regression might beat the nonparametric estimator.

How will you know?

We want a flexible estimator that is consistent, but in some cases it may
“lose” to a misspecified parametric estimator because it is more variable.



Prediction: Options?

» Recent studies for prediction have employed newer algorithms.
(any mapping from data to a predictor)
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> “When should | use random forest instead of standard regression
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Prediction: Options?

» Recent studies for prediction have employed newer algorithms.

> Researchers are then left with questions, e.g.,
> “When should | use random forest instead of standard regression
techniques?”
Journal of

Clinical
Epidemiology

Journal of Clinical Epidemiology 63 (2010) 1145-1155

Logistic regression had superior performance compared with regression

trees for predicting in-hospital mortality in patients hospitalized with
heart failure
Peter C. Austin®**, Jack V. Tu***4< Douglas S. Lee®*f



Prediction: Options?

» Recent studies for prediction have employed newer algorithms.

> Researchers are then left with questions, e.g.,
> “When should | use random forest instead of standard regression

. ”
techniques?
Journal of
Clinical
Epidemiology
Journal of Clinical Epidemiology 63 (2010) 1145—1155 e —
European Journal of Neurology 2010, 17: 945-950 doi:10.1111/].1468-1331.2010.02955.x

Logistic regression had suEerior I

trees for predicting in-hospital n
hea Random forest can predict 30-da¥ mortality of spontaneous
Peter C. Austin™“*, Jack  ntracerebral hemorrhage with remarkable discrimination
S. -Y. Peng®®©, Y. -C. Chuang®, T. -W. Kang® and K. -H. Tseng®
“Institute of Biomedical Informatics, National Yang-Ming University, Taipei; "Department of Anesthesiology, Taichung Veterans General

Hospital, Taichung; *School of Medicine, Chung Shan Medical University, Taichung; and *Department of Nephrology, Taoyuan Veterans

Hospital, Taoyuan, Taiwan



Prediction: Key Concepts

Loss-Based Estimation
Use loss functions to define best estimator of Eg(Y | W) & evaluate it.

v

Cross Validation
Available data is partitioned to train and validate our estimators.

Flexible Estimation

Allow data to drive your estimates, but in an honest (cross validated)
way.

These are detailed topics; we'll cover core concepts.



Loss-Based Estimation

Wish to estimate: Qo = Eo(Y | W).

In order to choose a “best” algorithm to estimate this regression function,
must have a way to define what “best” means.

Do this in terms of a loss function.



Loss-Based Estimation

Data structure is O = (W, Y) ~ Py, with empirical distribution P, which
places probability 1/n on each observed O;, i =1,...,n.

Loss function assigns a measure of performance to a candidate function
Q = E(Y | W) when applied to an observation O.



Formalizing the Parameter of Interest

We define our parameter of interest, Qo = Eo(Y | W), as the minimizer of
the expected squared error loss:

Qo = arg ming EoL(O, Q),
where L(O, Q) = (Y — Q(W))>.
EoL(O, Q), which we want to be small, evaluates the candidate Q, and it
is minimized at the optimal choice of Qy. We refer to expected loss as the

risk

Y: Outcome, W: Covariates



Loss-Based Estimation

We want estimator of the regression function @y that minimizes the
expectation of the squared error loss function.

This makes sense intuitively; we want an estimator that has small bias and
variance.



Ensembling: Cross-Validation
» Ensembling methods allow implementation of multiple algorithms.

» Do not need to decide beforehand which single technique to use; can
use several by incorporating cross validation.

Image credit: Rose (2010, 2016)



Ensembling: Cross-Validation
» Ensembling methods allow implementation of multiple algorithms.

» Do not need to decide beforehand which single technique to use; can
use several by incorporating cross-validation.

Learning 5 Training
Set Set

T Validation
v VY Set

Fold 1
Image credit: Rose (2010, 2016)



Ensembling: Cross-Validation

» In V-fold cross-validation, our observed data Oy, ..., O, is referred to

as the learning set and partition into V' sets of size =~ y;

» For any given fold, V — 1 sets comprise training set and remaining 1
set is validation set.

Learning 5 Training
Set Set

T Validation
v Y Set
Fold 1
Image credit: Rose (2010, 2016)



Ensembling: Cross-Validation

» In V-fold cross-validation, our observed data Oy, ..., O, is referred to

as the learning set and partition into V' sets of size =~ y;

» For any given fold, V — 1 sets comprise training set and remaining 1
set is validation set.

Learning 5 Training 5 5 5 5 5 - 5 5 5 5
Set Set

9 9 9 9 9 9 9 9 9 9
Validation 10 10 10 10 10 10 10 10 10
v Y Set
Fold 1 Fold1 ~ Fold2  Fold3  Fold4 Fold5 Fold6  Fold7  Fold8  Fold9  Fold10
Image credit: Rose (2010, 2016)




Super Learner: Ensembling

Build a collection of algorithms consisting of all weighted averages of the
algorithms.

One of these weighted averages might perform better than one of the
algorithms alone.

It is this principle that allows us to map a collection of algorithms into a
library of weighted averages of these algorithms.




Collection of
Algorithms

algorithm,,
algorithm,

algorithm

S 7 2 [ I 2P
—— T T

algorithm,,
algorithm,

algorithmp

algorithm,
algorithm,

algorithm

Family of weighted
combinations

| Super learner function |<—| EY1Z]= a, Z+q, Z+.+0, Z, |

Image credit: Polley et al. (2011)



Super Learner: Optimal Weight Vector

It might seem that the implementation of such an estimator is
problematic, since it requires minimizing the cross-validated risk over
an infinite set of candidate algorithms (the weighted averages).



Super Learner: Optimal Weight Vector

It might seem that the implementation of such an estimator is
problematic, since it requires minimizing the cross-validated risk over
an infinite set of candidate algorithms (the weighted averages).

The contrary is true.

Super learner is not more computer intensive than the “cross-validation
selector” (the single algorithm with the smallest cross-validated risk).

» Only the relatively trivial calculation of the optimal weight vector
needs to be completed.



Super Learner: Optimal Weight Vector

Consider that the discrete super learner has already been completed.
» Determine combination of algorithms that minimizes cross-validated

risk.
» Propose family of weighted combinations of the algorithms, index by
the weight vector ar. The family of weighted combinations:
> includes only those a-vectors that have a sum equal to one
» each weight is positive or zero



Super Learner: Optimal Weight Vector

Consider that the discrete super learner has already been completed.

» Determine combination of algorithms that minimizes cross-validated
risk.

» Propose family of weighted combinations of the algorithms, index by
the weight vector ar. The family of weighted combinations:

> includes only those a-vectors that have a sum equal to one
» each weight is positive or zero

Selecting the weights that minimize the cross-validated risk is a
minimization problem, formulated as a regression of the outcomes Y on
the predicted values of the algorithms (Z).



Super Learner: Optimal Weight Vector

Weight vector
Ei(Y |Z)=0aanla+oppnlp+...+apnl,

The (cross-validated) probabilities of the outcome (Z) for each algorithm
are used as inputs in a working statistical model to predict the outcome Y.



Super Learner: Optimal Weight Vector

Weight vector
Ei(Y |Z)=0aanla+oppnlp+...+apnl,

We have a working model with multiple coefficients o = {a, ap, . . .

that need to be estimated, one for each of the algorithms.



Super Learner: Optimal Weight Vector

Weight vector
Ei(Y |Z)=0aanla+oppnlp+...+apnl,

The weighted combination with the smallest cross-validated risk is the
“best” estimator according to our criteria: minimizing the estimated
expected squared error loss function.



Super Learner: Ensembling

Due to its theoretical properties, super learner:

performs asymptotically as well as the best choice among the family
of weighted combinations of estimators.

Thus, by adding more competitors, we only improve the
performance of the super learner.

The asymptotic equivalence remains true if the number of algorithms in
the library grows very quickly with sample size.



Super Learner: Oracle Inequality

B, € {0,1}" splits the sample into a training sample {i : B,(i) = 0} and
validation sample {i : B,(i) = 1}. P° g, and P! g, denote the empirical
distribution of the training and validation samplé, respectively. Given
candidate estimators P, — @k(Pn), the loss-function-based
cross-validation selector is:

ky = K(P,) = arg mkin EBnP,iBnL(Qk(P,?’Bn)).

The resulting estimator is given by Q(P,) = CA)R(PH)(P,,) and satisfies the
following oracle inequality: for any 6 > 0

Eg,{PoL(Qx,(Pl5,)—L(Qo)} < (1+20)Eg, min Po{L(Q(PY5,))—L(Qo)}
+2C(5)1+";i’<(”).

van der Laan & Dudoit (2003)



Screening: Will Be Useful for Parsimony

» Often beneficial to screen
variables before running
algorithms.

» Can be coupled with
prediction algorithms to
create new algorithms in
the library.
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» Can be coupled with the outcome, rank by
prediction algorithms to p-value

create new algorithms in
the library.



Screening: Will Be Useful for Parsimony

» Often beneficial to screen

variables before running > Clinical subsets

algorithms. » Test each variable with
» Can be coupled with the outcome, rank by

prediction algorithms to p-value

create new algorithms in » Lasso

the library.



The Free Lunch

» No point in painstakingly deciding which estimators; add them all.

» Theory supports this approach and finite sample simulations and data
analyses only confirm that it is very hard to overfit the super
learner by augmenting the collection, but benefits are obtained.



MRLOVENSTEIN.COM



Mortality Risk Score Prediction in Elderly Populations

Previous studies in the United States have indicated that

> gender,

» smoking status,

» heart health,

» physical activity,

» education level,

» income, and

> weight
are among the important predictors of mortality in elderly populations.
Prediction functions for mortality have been generated in an elderly

Northern California population aged 65 and older (Rose et al. 2011) and
for nursing home residents with advanced dementia (Mitchell et al. 2010).



Super Learner: Kaiser Permanente Database

Kaiser Permanente is based in Northern California and provides medical
services to approximately 350,000 persons over the age of 65 each year.

» Gender & age obtained from administrative databases

» 184 disease and diagnoses variables (medical flags) obtained
from clinical and claims databases

)
KAISER PERMANENTE.



Super Learner: Kaiser Permanente Database

Nested case-control sample (n=27,012).
» Outcome: death.
» Covariates: 184 medical flags, gender & age.

Ensembling method outperformed all other algorithms.

Generally weak signal with R2 = 0.11.

Observed data structure on a subject can be represented as
O = (Y,A,AX), where X = (W, Y) is the full data structure, and A
denotes the indicator of inclusion in the second-stage sample.

How will this electronic database perform in comparison to a cohort study?

van der Laan & Rose (2011)



Super Learner: Sonoma Cohort Study

» The observational cohort data included 2,066 persons aged 54 and

over who were residents of Sonoma, CA and surrounding areas in
Northern California.

» Enrollment began in May 1993 and concluded in December 1994 with
follow-up continuing for approximately 10 years.




Super Learner: Sonoma Cohort Study

Observational sample (n=2,066) of persons over the age of 54.
» Outcome Y was death occurring within 5 years of baseline.

» Covariates W = {Wj, ... Wi3} included self-rated health score and
physical activity.



Super Learner: Sonoma Cohort Study

Table: Characteristics (n = 2,066)

Variable No. %
Death (Y) 269 13
Female (W;) 1,225 59
Age, years

54 t0 60 (W,) 323 16
61to 70 (W5) 749 36
71 to 80 1,339 65
81t0 90 (W,) 245 12
> 90 (Ws) 22 11




Super Learner: Sonoma Cohort Study

Table: Characteristics (n = 2,066)

Variable No. %
Self-rated health, baseline
excellent (Ws) 657 32
good 1,037 50
fair (Wy) 309 15
poor (Ws) 63 3
Met minimum physical activity level (Wy) 1,460 71
Current smoker (Whp) 172 8
Former smoker (Wi1) 1,020 49
Cardiac event prior to baseline (Wi2) 356 17
Chronic health condition at baseline (Wy3) 918 44




Super Learner: Sonoma Cohort Study

1.

Start with the SPPARCS data
and a collection of M algorithms.
In this analysis M= 12.

| Wiz |W13 |

Y bayesgim
1 glmnet

KN nnet

Split the SPPARCS data into V mutually
exclusive and exhaustive blocks of equal or

approximately equal size. Here V=10.

Fit each algorithm on the training
set for each Vfold. For example,
in fold 1, our training set could be
blocks 1-9, where block 10 will be
the validation set. Each
algorithm is fit on blocks 1-9. In
fold 2, our training set might be
blocks 1-8 and block 10 with
block 9 serving as the validation
set, and so on. At the end of this
stage you have Vfits for each
algorithm.

Training
Set

Validation
Set

Fold1 Fold2 Fold 3

Fold V



Super Learner: Sonoma Cohort Study

For each algorithm, predict the outcome Y using 1D |Dyayesgim | - D et

the validation set in each fold, based on the

corresponding training set fit for that fold. At the
4_ end of this step you have a vector of predicted X . . X

values D/’ j=1,..., Mfor each algorithm. 2066 | 0.09 | | 042

1 0.54 0.42

Compute the estimated CV MSE for each (Y, -D )2
5 algorithm using the predicted values D; : i
. calculated from the validation sets. CV MSE; ==

Calculate the optimal weighted combination of

M algorithms from a family of weighted

combinations indexed by the weight vector a.

This is done by performing a regression of Yon  p (Y =11D) = expit(ct D
6- the predicted values D to estimate the vector a. " bayesglm.n” bayesglm

This calculation determines the combination that

minimizes the CV risk over the family of

weighted combinations.

+...+Q

‘nnet..n rmw)



Super Learner: Sonoma Cohort Study

Fit each of the M algorithms on the
complete data set. These fits
combined with the estimated
weights form the super learner
function that can be used for
prediction.

| algorithms | [ algorithm fits

D | Wi | | Wiz |W|s | Y bayesglm Q
[HER R E glmnet bayesgim,n
: | . _ ;

2066 [ 0 | IENERE nnet Orern

To obtain predicted values for the
SPPARCS data, run the data
through the super learner function.

QSL,n = 0-461Qbayesglm,n + 0'496ngm,n + 0~044Qmean,n



Super Learner: Sonoma Cohort Study

Cohort study of n = 2,066 residents of Sonoma, CA aged 54 and over.
» Outcome: death.

» Covariates: gender, age, self-rated health, leisure-time physical
activity, smoking status, cardiac event history, and chronic health
condition status.

» RZ2 =0.201

Two-fold improvement with less than 10% of the subjects & less than 10%
the number of covariates.

What possible conclusions can we draw?

Rose (2013)



Super Learner: Sonoma Cohort Study
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Super Learner: Sonoma Cohort Study

» Previous literature indicates that perception of health in elderly adults
may be as important as less subjective measures when assessing later
outcomes (ldler & Benyamini 1997, Blazer 2008).

> Likewise, benefits of physical activity in older populations have also
been shown (Denaei et al. 2009).



Super Learner: Public Datasets

Studied the super learner in publicly available data sets.
» sample sizes ranged from 200 to 654 observations
» number of covariates ranged from 3 to 18

> all 13 data sets have a continuous outcome and no missing values

Polley et al. (2011)



Super Learner: Public Datasets

Polley et al. (2011)

Name n p Source
ais 202 10 Cook and Weisberg (1994)
diamond 308 17 Chu (2001)
cps78 550 18 Berndt (1991)
cps85 534 17 Berndt (1991)
cpu 209 6 Kibler et al. (1989)
FEV 654 4 Rosner (1999)
Pima 392 7 Newman et al. (1998)

laheart 200 10
mussels 201 3
enroll 258 6
fat 252 14
diabetes 366 15
house 506 13

Afifi and Azen (1979)
Cook (1998)

Liu and Stengos (1999)
Penrose et al. (1985)
Harrell (2001)
Newman et al. (1998)




Super Learner: Public Datasets

Superleamer| o o o efeme mm—
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Relative MSE

Polley et al. (2011)



Super Learner: Mortality Risk Scores in 1CUs

Risk scores for mortality in intensive care units is a difficult problem, and
previous scoring systems did not perform well in validation studies.

» Super learner had extraordinary performance with AUC of 94%

» Web interface

Pirracchio et al. (2015)



Super Learner: Plan Payment Implications

Over 50 million people in the United States currently enrolled in an
insurance program that uses risk adjustment.

» Redistributes funds based
on health

» Encourages competition
based on efficiency/quality

Results

» Machine learning finds xerox.com
novel insights

» Potential to impact policy,

including diagnostic ﬂ—leol’rh Insurance
upcoding and fraud Marke'l'pkjce

Rose (2016)



Super Learner: Predicting Unprofitability

» Take on role as hypothetical profit-maximizing insurer

» Health plan design on pre-existing conditions is now highly regulated
in Health Insurance Marketplaces

» What about prescription drug offerings?

New super learner algorithm shows that this distortion is possible J

Rose, Bergquist, Layton (2017)



Ensembling Literature

» The super learner is a generalization of the stacking algorithm
(Wolpert 1992, Breiman 1996) and has optimality properties that led
to the name “super” learner.

» LeBlanc & Tibshirani (1996) discussed the relationship of stacking
algorithms to other algorithms.

» Additional methods for ensemble learning have also been developed
(e.g., Tsybakov 2003; Juditsky et al. 2005; Bunea et al. 2006, 2007;
Dalayan & Tsybakov 2007, 2008).

> Refer to a review of ensemble methods (Dietterich 2000) for further
background.

» van der Laan et al. (2007) original super learner paper.

» For more references, see Chapter 3 of Targeted Learning.



[Super Learner Example Code]



Super Learner R Packages

» SuperLearner (Polley): Main super learner package

» h2oEnsemble (LeDell): Java-based, designed for big data, uses H20
R interface to run super learning
» SAS macro (Brooks): SAS implementation available on Github

More: targetedlearningbook.com/software



Super Learner Sample Code

install.packages ("SuperLearner")
library(SuperLearner)



Super Learner Sample Code

##Generate simulated data##

set.seed(27)

n<-500

data <- data.frame(Wi=runif(n, min = .5, max = 1),

W2=runif(n, min = 0, max = 1),

W3=runif(n, min .25, max = .75),

W4=runif(n, min = 0, max = 1))

data <- transform(data,

Ws=rbinom(n, 1, 1/(1+exp(1l.5*W2-W3))))

data <- transform(data,

Y=rbinom(n, 1,1/(1+exp(-(-.2*W5-2+«W1+4*W5*W1-1.5%W2+sin(W4))))))



Super Learner Sample Code

##Examine simulated data##

summary (data)
barplot(colMeans(data))



Super Learner Sample Code

> summary(data)

w1
Min.
1st Qu.:
Median
Mean :
3rd Qu.:
Max .

W4
Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

OO S S

(4]
(4]
:0.
(]
(4]
4]

10.5ea7
.6291

7681

:0.7595
.8930
:0.9996

.eeaszer
. 26288006
.5118454
.5@27983
. 7344431
.9998029

w2
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

Min.

10.0826017

@.240574

10.461070
:0.491561

0.758717

10.999448

W5
10.000

1st Qu.:9.000

Media
Mean
3rd Q
Max.

n :9.000
:0.422
u.:1.000
:1.000

w3
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

Y
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

Ceee®®

PR e®

.2517
.3869
.5185
.5@37
.6235
. 7494

. 000
. 000
. 000
.376
. 000
. 000



Super Learner Sample Code

> barplot(colMeans(data))
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Super Learner Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm", "SL.mean",
"SL.randomForest", "SL.glmnet")



Super Learner Sample Code

Could use various forms of "screening” to consider differing variable sets

SL.library <- list(c("SL.glm","screen.randomForest", "All"),
c("SL.mean", "screen.randomForest", "All"),
c("SL.randomForest", "screen.randomForest", "All"),
c("SL.glmnet", "screen.randomForest","All"))

Or the same algorithm with different tuning parameters

SL.glmnet.alphaO <- function(..., alpha=0){
SL.glmnet (..., glmnet.alpha=alpha)}

SL.glmnet.alphab0 <- function(..., alpha=.50){
SL.glmnet (..., glmnet.alpha=alpha)}

SL.library <- c("SL.glm","SL.glmnet", "SL.glmnet.alpha50",
"SL.glmnet.alphaO","SL.randomForest")



Super Learner Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm", "SL.mean",
"SL.randomForest", "SL.glmnet")



Super Learner Sample Code

##Run the super learner to obtain predicted values for
the super learner as well as CV risk for algorithms
in the library##

set.seed(27)

fit.data.SL<-SuperLearner(Y=datal[,6],X=datal,1:5],
SL.library=SL.library, family=binomial(),
method="method.NNLS", verbose=TRUE)



Super Learner Sample Code

CV SL.glm_All

CV SL.mean_All

CV SL.randomForest_All
CV SL.glmnet_All

Number of covariates in
CV SL.glm_All

CV SL.mean_All

CV SL.randomForest_All
CV SL.glmnet_All

Number of covariates in
CV SL.glm_All

CV SL.mean_All

CV SL.randomForest_All
CV SL.glmnet_All

Number of covariates in
CV SL.glm_All

CV SL.mean_All

CV SL.randomForest_All
CV SL.glmnet_All

Number of covariates in
CV SL.glm_All

CV SL.mean_All

CV SL.randomForest_All
CV SL.glmnet_All

Number of covariates in
CV SL.glm_All

CV SL.mean_All

CV SL.randomForest_All

All

All

All

All

All

is:

is:

is:

is:

is:



Super Learner Sample Code

> #CV risks for algorithms in the library
> fit.data.SL

Call:
SuperLearner(Y = data[, 6], X = data[, 1:5], family =
binomial(),

SL.library = SL.library, method = "method.NNLS",

verbose = TRUE)

Risk Coef
SL.glm_All @.1345897 0.000000
SL.mean_All @.2353896c 0.000000

SL.randomForest_All @.1416266 0.221733
SL.glmnet_All 0.1341844 @.778267



Super Learner Sample Code

#Run the cross-validated super learner to obtain its CV risk##

set.seed(27)

fitSL.data.CV <- CV.SuperLearner(Y=datal[,6],X=datal,1:5], V=10,
SL.library=SL.library,verbose = TRUE,
method = "method.NNLS", family = binomial())



Super Learner Sample Code

##Cross validated risks##

#CV risk for super learner
mean((datal,6]-fitSL.data.CV$SL.predict) "2)

#CV risks for algorithms in the library
fit.data.SL



Super Learner Sample Code

> #CV risk for super learner

> mean((data[,6]-fitSL.data.CV$SL.predict)A2)
[1] ©.1340333

> #CV risks for algorithms in the library
> fit.data.SL

Call:
SuperLearner(Y = data[, 6], X = data[, 1:5], family =
binomial(),

SL.library = SL.library, method = "method.NNLS",

verbose = TRUE)

Risk Coef
SL.glm_All 0.1345897 0.000000
SL.mean_All ©.2353896 0.000000

SL.randomForest_All 0.1416266 ©0.221733
SL.glmnet_All ©.1341844 0.778267



Super Learner Sample Code

> #CV risk for super learner

> mean((data[,6]-fitSL.data.CV$SL.predict)A2)
[1] 9.1341084

-

> #CV risks for algorithms in the library

> fit.data.SL

Call:
SuperLearner(Y = data[, 6], X = data[, 1:5], family =
binomial(),
SL.library = SL.library, method = "method.NNLS",
verbose = TRUE)

Risk Coef
SL.glm_All ©.1345897 @.0000000
SL.glmnet_All ©.1341851 @.7769335

SL.glmnet.alphaS@_All @.1345260 @.0000000
SL.glmnet.alpha@_All @.1344223 @.0000000
SL.randomForest_All  @.1416445 @.2230665



When Learning a New Package...

How 1o actually learn any new programming concept

Essential

Changing Stuff and

Seeing What Happens

ORLY? @ThePracticalDev



More on SuperlLearner R Package

» SuperLearner (Polley): CRAN
» Eric Polley Github: github.com/ecpolley

More: targetedlearningbook.com/software



Targeted Learning (targetedlearningbook.com)
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van der Laan & Rose, Targeted Learning: Causal Inference for
Observational and Experimental Data. New York: Springer, 2011.
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